Effects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae.
نویسندگان
چکیده
A multicopy plasmid carrying the PDC1 gene (encoding pyruvate decarboxylase; Pdc) was introduced in Saccharomyces cerevisiae CEN. PK113-5D. The physiology of the resulting prototrophic strain was compared with that of the isogenic prototrophic strain CEN.PK113-7D and an empty-vector reference strain. In glucose-grown shake-flask cultures, the introduction of the PDC1 plasmid caused a threefold increase in the Pdc level. In aerobic glucose-limited chemostat cultures growing at a dilution rate of 0.10 h-1, Pdc levels in the overproducing strain were 14-fold higher than those in the reference strains. Levels of glycolytic enzymes decreased by ca. 15%, probably due to dilution by the overproduced Pdc protein. In chemostat cultures, the extent of Pdc overproduction decreased with increasing dilution rate. The high degree of overproduction of Pdc at low dilution rates did not affect the biomass yield. The dilution rate at which aerobic fermentation set in decreased from 0.30 h-1 in the reference strains to 0.23 h-1 in the Pdc-overproducing strain. In the latter strain, the specific respiration rate reached a maximum above the dilution rate at which aerobic fermentation first occurred. This result indicates that a limited respiratory capacity was not responsible for the onset of aerobic fermentation in the Pdc-overproducing strain. Rather, the results indicate that Pdc overproduction affected flux distribution at the pyruvate branch point by influencing competition for pyruvate between Pdc and the mitochondrial pyruvate dehydrogenase complex. In respiratory cultures (dilution rate, <0.23 h-1), Pdc overproduction did not affect the maximum glycolytic capacity, as determined in anaerobic glucose-pulse experiments.
منابع مشابه
Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess.
In Saccharomyces cerevisiae, oxidation of pyruvate to acetyl coenzyme A can occur via two routes. In pyruvate decarboxylase-negative (Pdc-) mutants, the pyruvate dehydrogenase complex is the sole functional link between glycolysis and the tricarboxylic acid (TCA) cycle. Such mutants therefore provide a useful experimental system with which to study regulation of the pyruvate dehydrogenase compl...
متن کاملRedirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae
Spatial organization of metabolic enzymes allows substrate channeling, which accelerates processing of intermediates. Here, we investigated the effect of substrate channeling on the flux partitioning at a metabolic branch point, focusing on pyruvate metabolism in Saccharomyces cerevisiae. As a platform strain for the channeling of pyruvate flux, PYK1-Coh-Myc strain was constructed in which PYK1...
متن کاملAnalysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae.
mRNA steady-state levels and activities of enzymes of intermediary carbon metabolism (hexokinase, phosphoglucoisomerase, phosphofructokinase, glucose-6-phosphate dehydrogenase, phosphoglucomutase) and glucose-regulated enzymes (pyruvate decarboxylase, pyruvate dehydrogenase, invertase, alcohol dehydrogenase) were determined in glucose-limited continuous cultures of an industrial strain of Sacch...
متن کاملCharacterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis
BACKGROUND One of the most fascinating properties of the biotechnologically important organism Saccharomyces cerevisiae is its ability to perform simultaneous respiration and fermentation at high growth rate even under fully aerobic conditions. In the present work, this Crabtree effect called phenomenon was investigated in detail by comparative 13C metabolic flux analysis of S. cerevisiae growi...
متن کاملSaccharomyces Cerevisiae as a Biocatalyst for Different Carbonyl Group under Green Condition
In this researchsaccharomyces cerevisiae (baker’s yeast) was used as a cheap, readily accessible, selective, efficient, and green bio-catalyst in a chemo selective reduction of carbonyl group to hydroxyl group. In this green procedure three substrates e.g. (3-(3-nitrophenyl)aziridin-2-yl)-1-phenyl-methanone, pyruvate ester, and 2-acetyl-γ-butyrolactone were r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 6 شماره
صفحات -
تاریخ انتشار 1998